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Boundary-value problems in the kinetic theory of gases 
Part I. Slip flow 

By M. M. R. WILLIAMS 
Nuclear Engineering Department, Queen Mary College, University of London 

(Received 13 May 1968) 

A new method for treating boundary-value problems in gas-kinetic theory has 
been developed. The new method has the advantage of reproducing the bulk or 
asymptotic flow properties accurately whilst giving a realistic description of the 
behaviour of the molecular distribution function in the neighbourhood of a wall. 
As an example, the Kramers, or slip-flow, problem is solved for a general specular- 
diffuse boundary condition and some new expressions for the slip coefficient, 
flow speed and molecular distribution function at the surface are derived. 

A brief discussion of the eigenvalue spectrum of the associated Boltzmann 
equation is given and its physical significance pointed out. 

Certain analogies between this problem and the Milne problem in neutron 
transport theory are demonstrated. 

1. Introduction 
During the past few years there has been a marked increase in interest in 

certain basic problems of the kinetic theory of gases. For example, such well- 
posed problems as the heat transport between parallel plates, Couette flow, 
Poiseuille flow and slip flow have been studied in some detail. In  each of these 
problems it is possible, under certain restrictive conditions on flow velocity and 
temperature difference, to linearize the Boltzmann equation and thereby subject 
it to the well-known techniques of linear analysis. 

Before a complete solution of the above problems may be obtained it is usually 
found necessary to make certain assumptions about the energy exchange process 
between atoms of the gas. This usually takes the form of replacing the true 
scattering kernel by a synthetic function which preserves certain physical 
characteristics of the original. The well-known Bhatnagar, Gross & Krook (1954) 
model (B.G.K.) is an example of this technique, and also the improvements 
to the B.G.K. model of Gross &Jackson (1959), Cercignani (1966) and Loyalka & 
Ferziger (1967). The advantage of such synthetic kernels is that they enable, in 
many cases, analytic solutions of the Boltzmann equation to be obtained. An 
important disadvantage, however, is that the hydrodynamic equations are not 
reproduced accurately, in the sense that the coefficients of conductivity and 
viscosity are incorrect. This is an important limitation since in many cases the 
mass flow and heat transport are governed mainly by these parameters. 
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We are faced, therefore, with an apparent dilemma: either we sacrifice bulk 
flow characteristics to obtain an accurate picture of the behaviour of the gas near 
boundaries or we use an approximate method of solving the transport equation 
and thereby lose the detailed form of the solution in those very regions which are 
of considerable practical importance. 

The present paper offers a way out of this impasse and is based on an analogy 
with a method developed by Williams (1968) in connexion with related neutron 
transport problems. It has also since been discovered that Simons (1967a, b)  has 
developed a similar technique in connexion with Poiseuille flow. The present 
series of papers will, however, go considerably beyond the work of Simons and 
will treat a variety of problems. 

The basic idea of the present method is to divide the solution of the Boltzmann 
equation into two parts: the asymptotic or hydrodynamic term and the boundary 
transient or Knudsen layer. The hydrodynamic part of the solution accounts for 
the bulk flow and heat transport and is treated exactly, in the sense that it obeys 
the Chapman-Enskog equations with the appropriate collision operator. The 
remaining term, which describes the Knudsen layer, also satisfies separately the 
Boltzmann equation (with modified boundary conditions), but in this equation 
we make use of the B.G.K. approximation. The net effect of this hybrid pro- 
cedure is to maintain the correct hydrodynamic solution but to render the com- 
plete problem exactly soluble, such has not been the case in previous treatments 
of this problem. 

The equation for the Knudsen layer, although containing an approximate 
representation of the energy transfer properties of the atoms of the gas, is 
expected to be a good approximation to the true situation. This is because the 
behaviour of the gas in the neighbourhood of a wall is dependent on a correct 
representation of the mean free path and the boundary conditions, rather than 
on the detailed energy exchange properties of the gas. Our model will therefore 
account for bulk properties exactly and will treat the boundary region in a 
realistic manner. 

Practical application of the problems discussed above may be found in the 
design of vacuum equipment and more recently in the assessment of the drag 
characteristics of satellites in the upper atmosphere. The value of an accurate 
transport theory analysis of rarefied gas problems also lies in the fact that 
reliable slip boundary conditions for the hydrodynamic equations may be 
derived. 

This is the first of a series of papers on these problems and in it we shall con- 
centrate on the slip flow or Kramers problem (Kramers 1949) and consider the 
other problems mentioned above in later reports. Finally, it  should be mentioned 
that the Kramers problem has already been treated in various approximations 
by Wang Chang & Uhlenbeck (1956), Shen (1965), Cercignani & Tironi (1966), 
Cercignani (1962, 1966) and Loyalka & Ferziger (1967). 

The last two authors have in fact made use of the idea of subtraction of the 
hydrodynamic solution but have solved for the transient solution by a variational 
method. 
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2. The basic equation and boundary conditions 
We consider an infinite space in which gas is flowing in the z-direction with a 

mass velocity En proportional to x ,  the co-ordinate perpendicular to mass flow. 
A plate, with accommodation coefficient p is introduced in the plane x = 0 and 
the problem is to find the stationary distribution function of the gas atoms in 
the half-space x 2 0. In many respects this problem resembles the classical 
Milne problem of neutron transport and radiative transfer (Davison 1957; 
Chandrasekhar 1960) and we shall point out the similarities in due course. 

The Boltzmann equation describing this situation may be written 

where f (c ,  x) is the distribution function, c the molecular velocity normalized to 
( 2 k T / M ) &  (T is temperature and M mass) and J is the collision operator. 

f ( C 7 4  = f o ( c , x )  ( 1  + h ( c , x ) ) ,  ( 2 )  
where fo(c, z) = n ( m / 2 n k ~ ) $  e-c2 (3) 

and c2 = c ~ + c ~ + ( c , - K o x ) ~ .  (4) 

Now we write 

In  (4) KO is a constant representing the gradient of the velocity in the x-direction 
far from the plate. It is readily verified that there are no variations in density or 
temperature in this problem (Cercignani 1966). 

Inserting ( 2 )  into ( 1 )  and neglecting terms of order h2 and hafo/ax, we obtain 

( 5 )  2K0c,c, + c,(ah/’x) = IzJ(h), 
where, to the same order of approximation, we may set c2 = ci + c i  + cf. 

In  general, the collision term J ( h )  cannot be simplified further. However, in this 
work we shall be concerned with scattering models for which nJ(h) can be written 

n J ( h )  = - V ( c )  h ( c ,  x )  + dc‘ e-C’2K(c, c’) h(c‘ ,  x ) ,  ( 6 )  s 
where V ( c )  is the collision frequency for atoms of speed c and K(c ,  c’) determines 
the rate a t  which atoms with velocity C’ before a collision have velocity c after 
a collision. Equation ( 6 )  is typical of the hard-sphere model. 

If we now refer to a polar co-ordinate system in which (c,, cy ,  c,) is replaced by 
( c ,  8, x) (see figure l), then ( 5 )  becomes 

where ,u = cos8. 
Expanding the kernel K in the Legendre polynomials as follows: 

10-2 
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inserting into (7) ,  multiplying by cosx and integrating over x(0,2n), leads to 

2Koc2,u(1 - , u 2 ) ~ + c , u ~ ~ +  V(c)g(c ,p ,x)  ax 

where 

FIGURE 1. Angular co-ordinates of molecular motion. 
2 is a unit vector in the direction of motion of a molecule. 

(9) 

Associated with (7) are the boundary conditions obeyed by the distribution 
functi0n.f at  x = 0. These may be stated quite generally as (Keller 1948) 

for c, > 0. Implicit in this condition is the fact that particles are conserved at the 
wall. r ( c ,  c ’ )  is the wall-scattering function and measures the probability that 
an atom incident on the wall with velocity C’ will leave it with velocity C .  Con- 
siderable experimental effort has been put into measuring I?, but €or the purpose 
of the present work we shall be content with the assumption of an arbitrary ratio 
of elastic diffuse scattering to specular reflexion. The boundary condition may 
then be written as 

(11) 
for ,u > 0 and 0 < x < 2n. P is the proportion of elastic diffuse scattering. 

In terms of 9, (1 1)  becomes 

g(c,rU,O) = ( l - P ) g ( c ,  - p , O )  (P > 0). (12) 
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It is interesting to note that the term involving diffuse scattering disappears en- 
tirely. However, had we chosen a more complex angular distribution of scattered 
particles, this term would still, in general, be present. For the very special case of 
purely diffuse scattering we have the extremely simple boundary condition 

g(c,,u, 0) = 0 (p > 0). (13 )  
We must now solve (8) subject to the boundary condition (12). Before doing 

this, however, let us define some quantities of practical interest. 

3. The pressure tensor and mean flow velocity 
The component P,, of the pressure tensor is defined as follows: 

which to the same order as the equation for h may be written 

If now (8) is multiplied by c,e4' and integrated over all velocity space, we 
find that it reduces to 

and hence P,, = constant. ( 1 6 )  
The value of this constant will be found later. 

tion as function of x ,  i.e. we require 
Another quantity of interest is the value of the mean flow velocity in the z-direc- 

n 

Inserting (2) and expanding to order K ,  we find 

4. The asymptotic distribution 
It is well known that in the absence of boundaries the molecular distribution 

function in a gas with slowly varying physical parameters obeys the Chapman- 
Enskog equations (Chapman & Cowling 1960). In  view of this fact it may be 
assumed that, for x 0, g(c, p, z) will also obey these equations, the effect of the 
boundary entering only in a minor fashion, Let us assume therefore that we may 
write g(c,,u, x )  as follows: 

(19 )  g(c, p, x) = A (c )  c( 1 - p2) 1 - 2Koc26( c )  p( 1 - p2)& - p(c ,  p, x), 
a form which may be inferred from the nature of the inhomogeneous term in (8). 
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A ( c )  and b(c) are functions to be determined andp(c, p, x) is a spatially transient. 

Inserting (19 )  into (8) and recalling the definition of Pi1)@), we find that A and 
term which decays rapidly to zero as we move away from the surface x = 0. 

b obey the following equations: 

and dc‘cf4 e - @  K , (c ,  c’) b(c’). ( 2 1 )  
0 

Since K , ( c ,  c‘)  is related to V ( c )  by 

the solution of ( 2 0 )  is simply A ( c )  = constant = A,. b(c)  satisfies the well-known 
Chapman-Enskog viscosity equation whose relation to the viscosity coefficient 
is given below. 

It is clear that insertion of ( 1 9 )  into ( 1 5 )  leads to 

where in view of ( 1 6 )  the integral over p(c,,u, x )  must be zero. 

mediately identify the coefficient of viscosity p v  through its definition, viz. 
Recalling that KO is the asymptotic velocity gradient aEzj8x, we can im- 

p,, = --PVKO, (23 )  
where, in terms of absolute units of velocity, we have 

With a solution of ( 2 1 ) ,  (24) constitutes an exact expression for ,av. We see 
therefore that the proposed solution, i.e. (8), has, at least, the correct asymptotic 
value. 

Now we insert ( 1 9 )  into the expression for the mean flow velocity (18). The 
result is written 

where we can also define the asymptotic mean flow velocity as 

Casu(x) = K o x +  &lo. ( 2 6 )  

This is the value assumed by c,(x) at some distance from the boundary. It is 
through (26) that we define the ‘slip coefficient ’ 6, viz. 

aLy(0)  c = Casy(0). (27 )  
Equation (27) may be used as a boundary condition for the liydrodynamical 

equations and is directly analogous to ‘asymptotic neutron transport theory ’ 
(Davison 1957) in which 6 is called the linear extrapolation distance. 

t: = A o / 2 K o  (28 )  From (26) we see that 

and our next task is, therefore, to obtain A,. 
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5. The transient term 

P(C, P, 4: 
After substituting (19) into (8) we arrive at the following equation for 

subject to the boundary condition 

P h P ,  0 )  = ( 1  - P ) p ( c ,  -P, O)+PAOC(l -P2P- ( 2 - P )  2 K 0 c 2 W p P  - P 2 ) 4  (30) 
where O < p < l .  

Equation (29) cannot be solved in closed form as it stands. However, if we 
approximate the scattering kernel on the right-hand side by a suitable synthetic 
function, then an analytic solution by the method of Wiener & Hopf is possible 
(Noble 1957). Thus, we set 

K,(c, c’) = YCC‘ V ( c )  V(c ‘ )  s,1, (31) 

This approximation amounts to a neglect of the higher orders of anisotropic 
scattering and replaces K , ( c ,  c ‘ )  by a separable, or degenerate, kernel. The great 
advantage of this particular choice is that it preserves the collision rate or mean 
free path, in the sense that the new K ,  still obeys ( 2 1 a ) ;  indeed it is defined to 
do this. We justify this approximation by arguing that, in the neighbourhood of 
the boundary, collisions with the wall and direct free flight effects are more im- 
portant than interparticle collisions. The free flight, or transport mean free path 
behaviour, is governed mainly by V(c) ,  which is reproduced exactly by our model. 
The boundary condition at  the wall involves no approximation whatsoever. 

With (31), the equation for p reads 

where a(%) = S000dc’c’3e-c.2V(e’)S1 dp’(1 -p’2)4p(c’ ,p’ ,x) .  
-1 

(33) 

Equation (32) constitutes a mixed boundary-value problem which is to be 
solved by the Wiener-Hopf technique. 

We define the Laplace transform 

6 ( s )  = e - S z a ( z ) d s  
S O a  

which, in view of the behaviour of p as z + 03, exists for Re (s )  > - where 
Emfn equals the minimum value of V ( c ) / c .  For the hard-sphere model it mag be 

and we shall in our analysis assume that this is generally true for all molecular 
scattering laws. 
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Applying the transform to (32) leads to 

-cpPfc,p,01+E~++p~lJ?1C,p,~) = 2Y(1-p2)+cV(c)&), (34) 

where p(c, p, s)  = jme-szp(c, p, x) ax. 

and integrating over c(0,co) and p( - 1, l), we obtain 

g+(4  + g-(4 = a s )  k(s), 

0 

Now, dividing (34) by V + cps, multiplying by the factor c3 V(c )  e+'( 1 -p2)B 

(35) 

where 

and 

In (37) we have denoted by p* the terms on the right-hand side of (30). 
As mentioned earlier, we will apply the Wiener-Hopf technique to solve (38). 

The basis of this method depends upon the possibility of rearranging both sides 
of the equation so that each is analytic in a half-plane; these half-planes overlap 
one another, i.e. there must be a common region of analyticity. 

We note below the regions in which the various terms in (35)  are analytic: 

&(a): Re ( s )  > -Cnrin, 

a(,): 
g+(s): Re (8) > - E m i n ,  

- Emin < Re ( s )  < Emin, 

g-(s): Re(s) < Emin. 

Clearly the required conditions for analyticity are not satisfied. We therefore 
employ the conventional Wiener-Hopf factorization technique and define a 

s 2  - p . function ~ ( s )  by 
7 ( s )  = 8 2  mln Q s ) .  (39) 

Since x(s) has a double zero at  s = 0, the function E(s)/s2 is entirely free from 
zeros in the strip -Emin < Re(s) < Emin. Furthermore the factor s2-Chin 
ensures that ~ ( s )  -+ 1 as Is1 -+ co, thus the logarithm of 7 tends to zero as Is1 -+ co. 
We may therefore define two new functions r f ( s )  as follows: 

l n ~ ( s )  = ln~+(s)-ln7-(s) (40) 

or 
~I 

where, by Cauchy's theorem, 
du 

InT+(s) = -. InT(u)-- 2n.t *P'Lirn u - s '  

T+ (s)isanalyticinthehalf-planeRe ( s )  < p' andT-(s) in thehalf-planeRe ( s )  > -PI, 

where - X m i n  < -p' < Re($) < /?' < Emin. 
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Substituting for E(s) from (39) and (40), (35) may be rewritten 

The right-hand side of (42) is now analytic in the half-plane Re (s) > -p' and 
the second term on the left-hand side is analytic in the half-plane Re (s) < p'. 
The first term on the left-hand side remains analytic only in the strip 

-Cmfn < Re (s) < p'. 
We now write g+(s)/T+(s) as a Cauchy integral, viz. 

where 

(43) 

(44) 

G+(s) is analytic in the half-plane Re(s) < /3 and G-(s) in the half-plane 
Re (s) > -p' .  This decomposition is possiblesinee g+(u)/7+(u) - O(u-') and hence 
the integrals exist. 

Finally, then, (42) becomes 

Each side is now analytic in a half-plane and there is a common region of analyti- 
city. We may conclude, therefore, by Liouville's theorem, that the functions on 
the right- and left-hand sides are analytic continuations of one another. Examina- 
tion of the behaviour of (45) as Is1 --f co indicates that we may set 

where C, is a constant. 
We obtain C, by imposing the condition that @(x) goes to zero at  least as 

fast as exp ( - XminX) .  This is equivalent to setting the coefficients of s-l and 
s-2 to zero in an asymptotic expansion of 6 ( s )  in powers of s-I. Thus we find 
C, = -ZminG-(0), and in addition G-(0) = ZminG-'(O). 

To evaluate G-(s) it is only necessary to invert the orders of the u and (c,p) 
integrations in (44). We then obtain 

p* contains the unknown functions A,/2Ko and p(c, -p, 0). Thus using the con- 
dition derived above that G-(0)  = E,inG-'(O) we find from (47) that 
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where we have used a relationship involving the function 7 4 s )  which is given in 
appendix A. 

A 0 / 2 K 0  is by definition the slip coefficient, but before it can be evaluated it 
will be necessary to obtain the equation for p(c, -p, 0). 

Integration of ( 3 2 )  leads to the relation 

for ,u > 0. 

p(c, -p, 0) becomes 
If we now insert the value of C,  into (46) and then use (49), the equation for 

(50) 

Thus, together, (48) and (50) yield the slip coefficient < and the quantity 
p(c, - p , 0 ) / 2 K o .  To obtain the value of the velocity a t  the surface, C,(0), it is 
only necessary to insert p(c, -p, 0) in ( 2 5 ) .  

For the spatial behaviour of the molecular distribution function it is convenient 
to return to ( 3 5 ) .  Then we find 

where C is a line lying to the right of all singularities of the integrand. Knowing 
@(z), the complete distribution function may be reconstructed by integrating 
the first order equation (32 ) .  

The complete inversion of (51) is represented by a rather complex function. 
The general form of the solution, however, may be written as 

m 1 
Thus cB(x) becomes - ca(x) = z + 5- 

KO 
(53) 

The form of this solution is sketched in figure 2 and we note that it consists of 
two well-defined parts: the asymptotic (z + 5) and a spatial transient. In  practice, 
the magnitude of the spatial transient is of some importance for it governs the 
applicability of the conventional hydrodynamic equations to problems of this 
type. The form of the transient given by ( 5 3 )  indicates that it should be negligible 
at about one maximum mean free path from the interface (i.e. &&). Calculations 
for the analogous Milne problem in neutron transport theory show this to be true. 
This suggests, therefore, that we may use the hydrodynamic equations with the 
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appropriate slip boundary condition in regions which are no nearer than C,tn 
from a surface. Before accepting this as a fact, however, it should be borne in 
mind that we have approximated the scattering kernel and have thereby altered 
the form of the transient solution. It is also worth noting that the constant 
collision rate approximation implies C m i n  = 0. In  this case the transient may 
be important up to a substantial distance from the boundary. However, nu- 
merical work by Loyalka & Ferziger (1967) has shown that this effect is not very 
serious. 

FIGURE 2. Mean flow velocity in z-direction 8s a function of 
distance z from the boundary. 5 is the slip coefficient. 

A more fundamental study of the Boltzmann equation (Williams 1966) 
shows that, in general, the equation for g(c, p, x) admits solutions of the form 
gv(c,  p) e+" and that the spatial behaviour of g depends upon the eigenvalues v. 
For our simple model it was shown that only a double, discrete eigenvalue at  
u = 0 existed, together with a continuous spectrum extending from v = C m i n  to 
v = CQ. The double zero.gives rise to the asymptotic part of the solution and the 
continuum to the integral term. In  practice, there may exist other discrete 
eigenvalues vj ( j  = 1,2,  . . .) which would contribute additional terms of the form 
Ajexp ( - v j x )  to (53). These vj are less than C m i n  and hence their contribution to  
the non-asymptotic (i.e. non-hydrodynamic) part of the solution will persist 
over a larger distance from the boundary. Preliminary work on this problem 
indicates that the uj are possibly absent altogether, but if they do exist they will 
be close to Z m i n  in absolute value. Thus the above criterion for the validity of 
the hydrodynamic approximation is still a good one. 
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6. Diffuse reflexion 
In the case of diffuse reflexion, p = 1, and the expressions for [ and g(c, -p, 0) 

may be obtained in a closed form. 5 is simply the first term of (48) with p = 1 
and g may be found from (50) and (19). The result is 

These expressions are generalizations of those given by previous authors and are 
clearly more accurate. 

A special case of the above work which is of some interest is the complete 
B.G.K. approximation, i.e. when we apply the approximation given by (31) to 
the asymptotic distribution as well. This case has been dealt with by Cercignani 
(1966). An immediate shortcoming of this approximation may be seen in the 
value for the viscosity. Using the hard-sphere model, we find from (2 1)  and (22) 
that the exact value of ,uv is given by Pekeris & Alterman (1957) 

whereas for the B.G.K. model, which corresponds to setting K ,  = 0 in (21), 

(pv/pl) = 1.016034, 

we find 

with 

Thus an error of about 40 in the bulk flow properties arises from the B.G.K. 
approximation. 

One of the virtues of the B.G.K. model is that extremely simple expressions 
are available for <, g(c, -p, 0) and C,(O). This is usefuI since these exact results 
can be used to check the accuracy of less accurate but more flexible methods of 
solving the transport equation, e.g. the variational and discrete ordinate 
techniques. 

We find, using some properties of the @ ( c , p )  functions given in the appendix, 
that 1 7/(0) +- ‘== 7-(0) (57) 
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The p-integrals are easily evaluated but the result will not be given here owing 

(i) V(c) = h = constant. 
to its length. Two particular cases are, however, worth quoting: 

c~ = 77 0 0 (1  dsz4e-Xa//; +22t2)2 dza2e-2") 1 + & 2  - (58) 

(ii) V(c )  = c. (59) 

The second case corresponds to a constant interaction cross-section between 
atoms, whereas the f i s t  assumes a constant collision rate. 

In terms of the average mean free path t, where 

. ,  
, with l ( c )  = Z(c)-l, (60) 

- J o  
dc c3 e-c2 dc 

I =  1: 
we find for case (i) : </i = 0.7644, case (ii) : </i = 0.5825, and for the true hard- 
sphere collision rate as given in appendix B, </i = 0.6510. 

These values compare with those deduced from the variational method of 
Loyalka & Ferziger as follows: case (i), 0.7578; case (ii), 0.5792; and for hard- 
spheres, 0.6439. This is a striking example of the power of the variational method. 

If the value of c obtained by the new method presented in this paper (i.e. (48) 
with B = 1) is compared with the value deduced by the B.G.K. model, i.e. (48) 
but with b(c) = V(c)-l, then it may be inferred that the new value of 5 is about 
40 yo greater than the B.G.K. value. We arrive at this conclusion by analogy with 
the calculation of the viscosity coefficient which, it is recalled, also depends on 
an average over b(c). These conclusions are again confirmed by the numerical 
work of Loyalka & Ferziger. 

Another quantity of interest which may be obtained in a fairly simple manner 
is the angular distribution of particles impinging on the plate, viz. 

where r ( 0 )  is given in the appendix. 
Cercignani (1966) has given a simple value of C,(O), but we believe this to be 

erroneous since it does not seem possible to reduce the expression further than 
the following quadrature:? 

t This error has been confirmed by Prof. Cercignani (private communication to the 
author, 1968). 
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For the special case of V ( c )  = A, we find C,(O) = 4K0i/3 ,/(27r), and for P = c,  
C,(O) = K O  i/ 45, which agrees with Cercignani's formula. 

7. Summary and conclusions 
A new method for treating boundary-value problems in the kinetic theory of 

gases has been developed which has the advantage of reproducing the asymptotic 
flow properties accurately and giving a realistic description of the molecular 
distribution function in the neighbourhood of a boundary. 

For the slip flow problem with a general diffuse-specular boundary condition 
we have obtained expressions for the slip coefficient, speed of flow at the boundary 
and distribution of molecules incident on the plate. These results are more ac- 
curate than any yet derived and provide useful boundary conditions for use with 
the hydrodynamic equations when these are valid. 

The main uncertainty in the present method lies in the use of the B.G.K. 
approximation for the transient or boundary-layer effect. This model predicts 
a physically acceptable eigenvalue spectrum for the spatial operator of the 
Boltzmann equation, but may lack certain refinements associated with a more 
realistic energy exchange mechanism. This problem is under investigation and 
results will be presented soon. In  the meantime we are using the present technique 
to study other flow problems, viz. Couette and Poiseuille flow, and also heat 
transport between parallel plates. 

The author is indebted to J. Spain for his capable programming of the integrals. 

Appendix A 

of the equations in the text. With $(c,p) = (~(c)+PLC,~~)~_(C(G)/P) we find: 
The following properties of the function $(c, p) are of use in simplifying some 

where a prime indicates differentiation. 
@(c, ,IL) is closely related to a function arising in the study of the Milne problem 

in neutron transport theory (Williams 1964) and is the velocity dependent 
equivalent of Chandrasekhar's H-function (Chandrasekhar 1960). 

Equation (A 1) may be derived by applying the Wiener-Hopf technique to 
the following equation: 

where 6 and K are defined in the text and 
g(s) = K ( s )  m, (A 4) 
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T- (O)  is derived from (41), from which we find 

Similarly T ~ ( O ) / T - ( O )  may be shown to be given by 

159 

(A 6) 

Insertion of 7(u) leads to (57a) of the text. 

Appendix B 
For the hard-sphere model, the collision frequency is given by 

where the 'cross-section' nmr2 is set equal to unity. 
The average value of Z(c), as defined by (60) of the text, is equal to 0.742893. 
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